冷门小说网 - 言情小说 - 数理王冠在线阅读 - 分卷阅读266

分卷阅读266

    者有话要说:  明天见

☆、190

法国曾经是世界数学中心之一,到现在也是数学强国,只是这些年以来,以前法国最为骄傲的代数几何随着新一代的年轻数学家崛起,渐渐的被德国和俄国超过,尤其是德国的舒尔茨以及布伦德,前后两个超级天才崛起让其他青年数学家黯然失色。

法国现在最出名的代数几何专家是孔涅教授,他的非交换几何十分有名气,现在法国更加侧重于概率论,偏微分方程,尤其是偏微分方程,放眼全球,没有一个国家比得上。

洛叶看即将在欧洲数学会上发表感言的数学家,偏微分方程方面,做一个小时报告的人数最多。

她之前已经见到了舒尔茨,现在又见到了在他之前最为知名的天才西蒙·布伦德。

早期他的研究重点是微分几何,近两年他的研究成果已经偏向了非线性偏微分方程,他是今年欧洲数学会会奖最强力的争夺者,即将做一个小时报告会。

他的报告重点就是武义-劳森猜想,也就是在最小表面理论中存在的长期问题,他对这个猜想的证明已经发表在了四大上,这个报告主要是补充和解答。

不得不说,因为主攻方向问题,她对布伦德并不如对舒尔茨来的关心。

在他的报告第二天要开始的时候洛叶才开始啃他之前发表的论文。

武义-劳森猜想有三十年历史,在三十年间不知道有多少数学家对这个猜想发起了挑战,最后全都失败,现在由布伦德解决了这个猜想,而他解决的方法十分出人意料,因为他用的方法并不算复杂,甚至可以说十分简单,整个猜想的证明方法也只用了十张纸,可以说让前仆后继对这个猜想发起挑战的数学家崩溃。

——他们准备了这么多的高级武器,居然最后败在了这样一个初级武器之下。

心里怎么一个憋屈了得。

而这可以说和洛叶现在进行的工作有异曲同工之妙,洛叶想把超维球体堆积问题的计算方式化繁为简,在看他那短的不行的证明过程时,洛叶似乎有所感觉。

洛叶边看边在旁边记录自己的感想,不知不觉到了中午,洛叶去一楼的餐厅用餐的时候,非常巧就碰到了西蒙·布伦德,他们居然住在同一家酒店。

洛叶想了想,干脆走上去搭讪,把之前写下来的一些问题问当事人好了。

布伦德看到洛叶只是有些诧异,不过也只是有些,听说她是普林斯顿的学生,跟随教授前来参加欧洲数学会,脸上就不由的露出了些许了然。

“……空间和基本群?”

非线性偏微分方程,洛叶了解的并不多,洛叶询问的内容还是偏向于微分几何,而且洛叶问的还是数学大师约翰·米尔诺在十九世纪发表的一篇论文,表述了空间和基本群的关系。

洛叶,“我注意到你曾经发表的过的论文,Yamabe流动的收敛性,紧凑猜想的反例,里面是有群论相关,负曲率空间的基本群受到曲率强烈的约束,必须具备某些特殊的性质,而基本群也算是拓扑几何的概念。”

数学主要分支有一百多个,可是这些分支之间的联系十分紧密,洛叶研究的群论可以和目前国际热门数学研究领域全都挂上勾。

布伦德道,“普利斯曼定理看过吗,它比较详细的表述了曲率如何影响基本群。”

而在旁人看来,两人完全是交谈甚欢,而在他们旁边的人完全听不懂他们两个在讨论什么。

这个时间正值暑假,来欧洲旅行的不少,比较年轻的像是学生一样的人就忍不住的看向他们两人,有一个还忍不住拍了照片,悄悄的询问同桌,“你们能听得懂他们在交流什么吗?”

其他人纷纷摇了摇头,“我看报道,最近欧洲数学会要在这里召开,他们应该是来参加的人吧。”

“他们看起来一点不像是数学家啊。”

“尤其是那个女生,看起来好小。”

在他们印象中,数学家应该都是头发花白,年过半百,可无论是布伦德还是洛叶都颠覆了他们的想象,这也太年轻了。

他们是外行,可是餐厅却不乏有内行,他们是绝对认得布伦德的,看着他居然和一个小女生交谈甚欢,他们都不由的想揉一揉眼睛,确定没有错之后,看洛叶的眼神就多了几分奇异。

布伦德也没有想到他居然可以和洛叶基本上没有障碍的交流下去,不但是曲率和基本群,洛叶懂黎曼几何,辛几何,拓扑几何,分形几何,有些涉猎他自己都没有她来的广。

他比洛叶这个学生要忙多了,在不得不结束和她的谈话时,非常诧异的问道,“你对几何学的认识明显比代数学要好,为什么要选择的群论?”

洛叶当然不会和他说真的原因,只是道,“等我硕博的时候应该会选择代数几何。”

布伦德道,“那应该很快了。”

他20岁就拿到了博士学位,和他比洛叶的进度算是慢了,可是经过刚刚的交谈,他相信只要他愿意,应该会很快拿到硕士学位和博士学位,他匆匆写下了自己的邮箱,“如果你在微分几何上有什么问题可以和我讨论。”

欧洲数学会主要是面向于在欧洲工作以及欧洲籍贯的数学家,布伦德拿到博士学位后就开始在斯坦福担任教授,现在在哥伦比亚大学任教,可以说他已经许久没有回过欧洲了,这次回来,不但要准备报告,还要和一众故人联络。

等布伦德走后,洛叶收好了纸条,吃完剩下的东西才继续上楼。

第二天布伦德的报告会,洛叶也去听了,下面做的满满的,其中不乏知名的数学家。

而布伦德的补充主要是在对于在他证明武义-劳森猜想中运用的的一个泛函方程,正是因为这个泛函方程,让他有了灵光一闪,最终用一个简单无比的方式来证明了这个猜想。

而光是一个补充,是无法支撑过一个小时的报告会的,在讲完这个泛函方程后,他又开始讲起了让自己之前发表过微分球面定理(DifferentialSphereTheorem),也是对那篇论文做一个重要补充,讲其中一个关键点,三维流行几何。

“……任何紧致,可定向的三维流行,当用其中一些整正互补相互交的球面和环面去切,对一个紧致单联通的黎曼流行,它的截面曲率位于……”

“……在截面曲率拼挤条件下,常曲率空间形式中的紧致子流行拓扑同胚于球面,当大于四维,紧致定向的子流行满足于……”

等到布伦德的报告讲完,下面响起了热烈的掌声,趁着这掌声洛叶悄然离去。

欧洲数学会的影响力差不多仅次于世界数学会,在这样的会上,